Error Estimates for Discontinuous Galerkin Time-Stepping Schemes for Robin Boundary Control Problems Constrained to Parabolic PDEs
نویسندگان
چکیده
We consider fully discrete finite element approximations of a Robin optimal boundary control problem, constrained by linear parabolic PDEs with rough initial data. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for the state, adjoint and control variables. Computational examples validating our expected rates of convergence are also provided.
منابع مشابه
Convergence of Discontinuous Time-stepping Schemes for a Robin Boundary Control Problem under Minimal Regularity Assumptions
The minimization of the energy functional having states constrained to semi-linear parabolic PDEs is considered. The controls act on the boundary and are of Robin type. The discrete schemes under consideration are discontinuous in time but conforming in space. Stability estimates are presented at the energy norm and at arbitrary times for the state, and adjoint variables. The estimates are deri...
متن کاملSymmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations
Abstract. We consider fully discrete finite element approximations of a distributed optimal control problem, constrained by the evolutionary Stokes equations. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for the ...
متن کاملA Posteriori Error Estimates for Discontinuous Galerkin Time-Stepping Method for Optimal Control Problems Governed by Parabolic Equations
In this paper, we examine the discontinuous Galerkin (DG) finite element approximation to convex distributed optimal control problems governed by linear parabolic equations, where the discontinuous finite element method is used for the time discretization and the conforming finite element method is used for the space discretization. We derive a posteriori error estimates for both the state and ...
متن کاملDiscontinuous Galerkin Approximation of Linear Parabolic Problems with Dynamic Boundary Conditions
In this paper we propose and analyze a Discontinuous Galerkin method for a linear parabolic problem with dynamic boundary conditions. We present the formulation and prove stability and optimal a priori error estimates for the fully discrete scheme. More precisely, using polynomials of degree p ≥ 1 on meshes with granularity h along with a backward Euler time-stepping scheme with time-step ∆t, w...
متن کاملAdaptive Discontinuous Galerkin Methods for Fourth Order Problems
This work is concerned with the derivation of adaptive methods for discontinuous Galerkin approximations of linear fourth order elliptic and parabolic partial differential equations. Adaptive methods are usually based on a posteriori error estimates. To this end, a new residual-based a posteriori error estimator for discontinuous Galerkin approximations to the biharmonic equation with essential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 52 شماره
صفحات -
تاریخ انتشار 2014